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A DETERMINANTAL APPROACH TO IRRATIONALITY

WADIM ZUDILIN

Abstract. It is a classical fact that the irrationality of a number ξ ∈ R follows
from the existence of a sequence pn/qn with integral pn and qn such that qnξ−pn 6=
0 for all n and qnξ − pn → 0 as n → ∞. In this note we give an extension of
this criterion in the case when the sequence possesses an additional structure; in
particular, the requirement qnξ − pn → 0 is weakened. Some applications are
given including a new proof of the irrationality of π. Finally, we discuss analytical
obstructions to extend the new irrationality criterion further and speculate about
some mathematical constants whose irrationality is still to be established.

1. Irrationality criteria

Let ξ be a real number we wish to prove the irrationality of. Assume there
exists a sequence pn/qn with integral pn and qn such that ξ 6= pn/qn for all n and
qnξ−pn → 0 as n→∞. If ξ were rational, ξ = p/q say, then q(qnξ−pn) = qnp−pnq
is a nonzero integer for all n, hence its absolute value is at least 1. On the other
hand, |q(qnξ − pn)| is less than 1 for n sufficiently large; a contradiction.

Let us put the above classical irrationality criterion in a standard context of real
numbers ξ that happen to be periods. Suppose we have a sequence of rational
approximations

rn = anξ − bn ∈ Qξ + Q (1)

such that

(a) 0 < rn ≤ C1ε
n for some C1, ε > 0 and all n = 1, 2, . . . ;

(b) δnan, δnbn ∈ Z for some sequence of positive integers δn; and
(c) δn < C2∆

n for some C2,∆ > 0 and all n = 1, 2, . . . .

Proposition 1. Under hypotheses (a)–(c), if ε∆ < 1 then ξ is irrational.

The principal goal of this note is to demonstrate that under some further (natural)
assumptions on the approximants (1) we can replace the condition ε∆ < 1 by a
slightly different one. Namely, assume additionally that

(d) rn =

∫
γ

z(x)nω(x) for some domain γ ⊂ Rm, non-constant continuous func-

tion z(x) ≥ 0 on γ and measure (positive differential form) ω(x); and
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(e) δn divides δn+1 for all n = 1, 2, . . . .

Proposition 2. Under hypotheses (a)–(e), if ε∆3/2/4 < 1 then ξ is irrational.

Our proof, in which the classical Vandermonde determinants as well as Hankel
determinants of the sequence (1) show up, is given in Section 2. Note that ε∆3/2/4 <
(ε∆)3/2 if ε > 1/16, thus Proposition 2 has potentials to produce irrationality results
when Proposition 1 is not applicable. For example, if ∆ ≈ e = 2.7182 . . . and
0.34 < ε < 0.89 then Proposition 2 implies the irrationality of ξ, while Proposition 1
does not. In Sections 3 and 4 we give such applications of the new irrationality
criterion to log 3 and π. Though these numbers are known to be irrational, our
proofs based on the argument of Proposition 2 are new.

The example ξ = 1, an = 1, bn = (2n−1)/2n, so that anξ−bn = 1/2n, demonstrates
the importance of (d): in this case we can take ε = 1/2 (or slightly bigger) and
δn = 2n, hence ∆ = 2. The condition ε∆3/2/4 =

√
2/4 < 1 is clearly satisfied but

without any implication, as there is no way to write the linear forms anξ − bn in
the form assumed in (d) for a non-constant function z(x). (In fact, all the Hankel
determinants that appear in the proof of Proposition 2 below vanish in this case.)
On the other hand, the example z(x) = x, ω(x) = dx and γ = [0, 1] (this corresponds
to the choice ξ = 1 or 0), so that ε = 1,

δn = lcm(1, 2, . . . , n+ 1)

and ∆ is anything slightly larger than e, shows that the condition ε∆3/2/4 < 1
cannot be relaxed “too much.” In Section 5 we discuss the optimality of the latter
constraint as well as comment on the orthogonality induced by the data from con-
dition (d). Finally, in Section 6 we speculate about some mathematical constants
whose irrationality is still to be established.

2. Proof of the irrationality criterion

Proof of Proposition 2. Conditions (a) and (d) imply that

0 < sup
x∈γ

z(x) ≤ ε.

Consider the polynomial forms

Rn =
1

n!

∫
· · ·
∫
γn

∏
1≤j<`≤n

(z(x`)− z(xj))2ωn ∈ Qξn + · · ·+ Qξ + Q. (2)

Note that Rn > 0, because the integrand is nonnegative. Furthermore, the form (2)
has a nice Hankel determinant evaluation due to Heine [5],

Rn = det
0≤j,`<n

(rj+`), (3)

which together with hypotheses (b) and (e) imply that

δn−1δn · · · δ2n−2Rn ∈ Zξn + · · ·+ Zξ + Z.
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In addition, we have(
sup

0≤zj≤ε
j=1,...,n

∏
1≤j<`≤n

(zj − z`)2
)1/n2

→ ε/4 as n→∞ (4)

(the Fekete–Chebyshev constant of the interval [0, ε]), so that

Rn < (ε/4)n
2+o(n2) as n→∞.

If ξ were rational, ξ = p/q, then
∏n−1

j=0 δn−1+j · qnRn would be a positive integer
for any n. On the other hand,

δn−1δn · · · δ2n−2qnRn < (C2q)
n∆(3/2)n2

(ε/4)(1+o(1))n
2 → 0 as n→∞,

a contradiction. �

In the argument above we could have used the inclusion
∏n−1

j=0 δn−1+j · qn · n!Rn ∈
Z instead (with the factorial factor) as an immediate consequence of the integral
representation (2), no reference to (3) is necessary. But because Heine’s theorem
about the determinant representation of Rn is itself quite elementary and nice, we
reproduce its proof here for completeness.

Proof of identity (3). Using the definition of the sequence rn write

det
0≤j,`<n

(rj+`) = det
0≤j,`<n

(∫
γ

z(xj)j+`ω(xj)

)
=

∫
· · ·
∫
γn

det
0≤j,`<n

(
z(xj)j+`

)
ω(x0)ω(x1) · · ·ω(xn−1)

=

∫
· · ·
∫
γn

det
0≤j,`<n

(zj+`j )ωn

=

∫
· · ·
∫
γn
z1z

2
2 · · · zn−1n−1

∏
0≤j<`≤n−1

(z` − zj)ωn

where zj = z(xj) and the evaluation

det
0≤j,`<n

(z`j) =
∏

0≤j<`≤n−1

(z` − zj) (5)

is applied. It remains to notice that the latter Vandermonde determinant is in-
variant, up to multiplication by sgn(σ), under the transformations σ ∈ Sn of the
n-element set {0, 1, . . . , n− 1} of indices and that∑

σ∈Sn

sgn(σ) zσ(1)z
2
σ(2) · · · zn−1σ(n−1) = det

0≤j,`<n
(z`j)

is the same determinant (5). �



4 WADIM ZUDILIN

3. Some applications of the criteria

For a (real or complex) a 6= 0, 1, introduce the sequence of quantities

In = In(a) =

∫ a

1

(x− 1)n(a− x)n

xn+1
dx, n = 0, 1, 2, . . . . (6)

Applying the binomial theorem to each of the factors in the numerator of integrand
and then integrating we find out that

In =
n∑

j,`=0

(
n

j

)(
n

`

)
(−1)n+j+`an−`

∫ a

1

xj+`−n−1dx

=
n∑

j,`=0
j+ 6̀=n

(
n

j

)(
n

`

)
(−1)n+j+`

aj − an−`

j + `− n
+ (log a)

n∑
j=0

(
n

j

)2

aj,

where log a is understood as the integral of (dx)/x along a given path from 1 to a
in (6). Since |j + ` − n| ≤ n in each summand of the first sum, we conclude from
the representation obtained that

dnIn ∈ Z[a] log a+ Z[a], n = 0, 1, 2, . . . , (7)

where dn denotes the least common multiple of the integers from 1 to n (and d0 = 1).

Note that d
1/n
n → e as n→∞ by the prime number theorem. If a > 1 is an integer

then the inclusions (7) simply mean that dnIn ∈ Z log a+ Z for n = 0, 1, 2, . . . .
The family above corresponds to the choice

z(x) =
(x− 1)(a− x)

x
, ω(x) =

dx

x
and γ = [1, a] ⊂ R,

in the notation of (a)–(e). When a > 1, one easily finds that

max
1≤x≤a

{z(x)} = z(
√
a) = (

√
a− 1)2.

Theorem 1. log 2 and log 3 are irrational.

Proof. As (
√

2 − 1)2e = 0.4663 . . . < 1, the irrationality of log 2 follows already
from application of Proposition 1. In the case of log 3 we use (

√
3 − 1)2e3/2/4 =

0.6004 . . . < 1 and Proposition 2. �

4. A new proof of the irrationality of π

We can also use the above argument for a = i =
√
−1, when the integrals in (6)

produce approximations to π/2 = −i log i with coefficients from Q[i]. (For all
practical purposes we can think of integration in (6) as going along the arc of the
unit circle.) In fact, the change of variable x = (1 + it)/(1 − it) transforms the
integrals into

In = In(i) = 2n+1i(−1− i)n
∫ 1

0

tn(1− t)n

(1 + t2)n+1
dt, n = 0, 1, 2, . . . ;
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therefore, it follows from (7) and the latter that

2i(1− i)4{n/4}dnIn ∈ Zπ + Z, n = 0, 1, 2, . . . , (8)

in this case, where { · } denotes the fractional part.

Theorem 2. π is irrational.

Proof. We use

max
x∈arc(1,i)

∣∣∣∣(x− 1)(i− x)

x

∣∣∣∣ = 23/2 max
t∈[0,1]

t(1− t)
1 + t2

= 2−
√

2 = 0.5857 . . .

and the inclusions (8). Since (2 −
√

2)e3/2/4 = 0.6563 . . . < 1, (a slight adaptation
of) Proposition 2 implies that the approximated number π is irrational. �

We remark that the potentials of the integral construction∫ 1

0

tn(1− t)n

(1 + t2)n+1
dt ∈ Qπ + Q

from the classical perspective (that is, Proposition 1) are already discussed in the sec-
tion “A second attempt” in [2, p. 375]: The first few approximations to π produced
by the integrals look promising, “[u]nfortunately in the long run the asymptotics
have decided otherwise.” Proposition 2 can be applied (though not directly since
the corresponding rn there have to be replaced with

√
2 rn for n odd to accommodate

the arithmetic part of the argument) to the integrals by choosing

z(t) =
23/2t(1− t)

1 + t2
, ω(t) =

dt

1 + t2
, γ = [0, 1]

and δn = 4dn. Note the related elementary identity

det
0≤j,`<n

(cj+`vj+`) = cn(n−1) det
0≤j,`<n

(vj+`), c ∈ C \ {0}, (9)

that allows to easily manipulate with the extra factors like 23/2 above in computing
the Hankel-determinant asymptotics.

5. Commentary

Though Proposition 2 does not sound very practical, a question is about how
much we can relax hypothesis (d) to still possess its implication.

One possibility is to “densify” the sequence of linear forms rn and consider instead
the sequence r̂n = rbn/kc for some fixed integral k ≥ 2 and together with the corre-

sponding Hankel determinants R̂n = det0≤i,j<n(r̂i+j). Surprisingly enough (as not
discovered in the existing literature) the underlying “k-stuttering” Vandermonde
determinants

det
0≤j,`<n

(z
b(j+`)/kc
j )

(that replace the classical Vandermonde determinants (5) in the above proof of
Heine’s identity (3)) factors into the product of powers of zj and of k Vandermonde

determinants; roughly speaking, R̂n behaves similar to Rk
bn/kc, thus leading to no
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refinement of Proposition 2. Furthermore, we recall that the non-vanishing of R̂n

for infinitely many indices n can be shown without the reference to a generalization
of Heine’s identity but with the use of the equality

∞∑
n=0

r̂nz
n = (1 + z + · · ·+ zk−1)

∞∑
n=0

rnz
kn

and of an old result of Kronecker (see [8, pp. 566–567] or [12, Division 7, Prob-
lem 24]): the Hankel determinants det0≤j,`≤n−1(vi+j) for n = 0, 1, . . . eventually
vanish if and only if the generating series

∑∞
n=0 vnz

n represents a rational function.
Further variations are still possible, for example, considering other even powers of

the Vandermonde determinants in (2) — this has a nice interpretation by means of
the Hankel hyperdeterminants (see [9]) or replacing the Vandermonde determinants
by other polynomials p(z) ∈ Z[z1, . . . , zn] (and ensuring that the corresponding
integrals over γn do not vanish). But there is a natural analytical obstruction to
getting anything weaker than ε∆3/2/4 < 1. It is based on the fact that the n-variate
Z-transfinite diameter tZ([0, ε]n), which is introduced and studied in [3] for general
sets E ⊂ Cn, tends to ε/4 as n → ∞— see Proposition 3 below. This means that
for a nonzero n-variable polynomial p(z) of total degree N with integral coefficients
we have

sup
z∈[0,ε]n

|p(z)| ≥ ρNn ,

where ρn → ε/4 as n→∞, thus showing that the upper estimate (4) is best possible,
as the total degree of the polynomial

∏
1≤j<`≤n(zj − z`)2 is n2 − n.

Proposition 3. For the multivariate Z-transfinite diameter introduced in [3] we
have

lim
n→∞

tZ([a, b]n) =
|b− a|

4
.

Proof. There are two C-extensions of the n-variate Z-transfinite diameter, called
τ(E) and T (E) in [15]. The Hilbert-type relation between tZ(E) and τ(E) = tC(E)
is established in [3, Theorem 3.1]:

tZ(E) ≤ τ(E)n/(n+1). (10)

The estimate

T (E) ≤ tZ(E) (11)

trivially follows from the definition of the two characteristics. Furthermore, the
bound T (E) ≥ c(E), where c(E) is the capacity of E is proved in [15]. If we
restrict our attention to the cartesian product E = [a, b]n then c(E) = c([a, b])
by [15, property d

′)] and τ(E) = τ([a, b]) by [15, property d)]. It remains to use
τ([a, b]) = c([a, b]) = |b−a|/4 to conclude from (10) and (11) that the required limit
relation holds true. �

Our further remark refers to the fact that the data γ ⊂ Rm, z(x) and ω(x) from
condition (d) in Section 1 give rise to the scalar product on a space of single variable
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functions of z ∈ R:

〈u, v〉 =

∫
γ

u(z(x))v(z(x))ω(x),

so that the sequence rn in (d) is nothing but the sequence of the corresponding
moments. It may be of some interest to study the orthogonal polynomials pn(z)
for n = 0, 1, . . . arising from the product: the polynomial pn(z) can be explicitly
written as the determinant Rn+1 in (3), in which the last row is replaced with the
row 1, z, . . . , zn, or as the integral

pn(z) =
1

n!

∫
· · ·
∫
γn

n∏
j=1

(z − z(xj))
∏

1≤j<`≤n

(z(x`)− z(xj))2ω(x1) · · ·ω(xn).

Plenty of the theory of orthogonal polynomials naturally extends to these general
settings, though it is not clear how much of this can be used in the irrationality
context.

6. Catalan and q-Apéry constants

It is worth mentioning that Proposition 2 is applicable to the integrals

d2n

∫∫
[0,1]2

(
x(1− x)y(1− y)

1− xy

)n
dx dy

1− xy
∈ Z ζ(2) + Z

and

d3n

∫∫∫
[0,1]3

(
x(1− x)y(1− y)z(1− z)

1− (1− xy)z

)n
dx dy dz

1− (1− xy)z
∈ Z ζ(3) + Z

used by Beukers in his proof [1] of Apéry’s theorem about the irrationality of ζ(2)
and of ζ(3), the Apéry constant. This follows from

max
(x,y)∈[0,1]2

x(1− x)y(1− y)

1− xy
=

(√
5− 1

2

)5

,

max
(x,y,z)∈[0,1]3

x(1− x)y(1− y)z(1− z)

1− (1− xy)z
= (
√

2− 1)4,

the prime number theorem and calculation

1

4

(√
5− 1

2

)5

e3 = 0.4527 . . . < 1,
1

4
(
√

2− 1)4e9/2 = 0.6624 . . . < 1.

For the related construction of rational approximations

24n+1d22n

∫∫
[0,1]2

(
x(1− x)y(1− y)

1− xy

)n
x−1/2(1− y)−1/2 dx dy

1− xy
∈ ZG+ Z

to the Catalan constant

G =
∞∑
k=0

(−1)k

(2k + 1)2

(see [11, 13, 16]), none of the irrationality criteria works, because of the too impetu-
ous growth of the denominators required.
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Other ways of “densifying” the sequence of rational approximations, different
from the one discussed in Section 5, can be proposed, that take into account the
expression of z(x). For example, in the case of the Catalan constant we can choose
rational approximations to be

r̃n =

∫∫
[0,1]2

xb(n+1)/5c(1− x)b(n+2)/5cyb(n+3)/5c(1− y)b(n+4)/5c

(1− xy)bn/5c

× x−1/2(1− y)−1/2 dx dy

1− xy
∈ QG+ Q, n = 0, 1, 2, . . . ,

because the corresponding Hankel determinants without the integer parts in the
exponents behave asymptotically like (ε1/5/4)n

2
, where ε = ((

√
5−1)/2)5. However,

numerical computation of the honest Hankel determinants R̃n = det0≤j,`<n(r̃j+`)

suggests R̃
1/n2

n → (ε/4)1/5 as n → ∞; this numerical observation can be rigorously
justified using again the “5-stuttering” Vandermonde determinants.

Another interesting question is about possible q-extensions of Proposition 2; the
work [6] suggests that there may be some. For example, in [7] q-analogues of the
Apéry–Beukers rational approximations to ζ(3) were constructed, which approxi-
mate the q-series

ζq(3) =
∞∑
k=1

σ2(k)qk =
∞∑
m=1

m2qm

1− qm
=
∞∑
k=1

qk(1 + qk)

(1− qk)3
,

for q the reciprocal of an integer different from 0 and ±1. It is expected that this
q-Apéry constant is irrational for such values of q, but the corresponding q-approx-
imations rn from [7] do not produce any irrationality result, because |rn|1/n

2 ∼ 1

while δ
1/n2

n ∼ |q|−9/π2
as n → ∞, where δnrn ∈ Zζq(3) + Z. Though no arith-

metic consequences come out from considering the Hankel determinants Rn =
det0≤j,`<n(rj+`), an analytic argument [17, Section 4] shows their (better than ex-

pected) behaviour |Rn|1/n
3 ∼ |q|1/3 as n→∞.

More ideas are required to deal with the quantities like G and ζq(3).
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